
APPENDIX

This appendix contains a more detailed description of the most important functions and
variables within each class in the project.

CAction
cards_Deal()
Assembles information needed to make a deal call to the server. The information is then
POST'ed to the server by the CHTTPRequest. Then response from the server is sent to
objTableGFX.setButtons which updates the graphics according to the parameters
contained within it
A similar function, to cards_Deal(), exists for all actions the user can take while playing
such as hit, stand, double etc.
login()
Requests the login page and tries to log in with given username and password as input.
Establishes the gaming session if successful.

CBJButton
Enable()/Disable()
Enables and disables a button. A disabled button is not drawn to the screen and doesn’t
trigger any events if the screen is touched in a position inside its area.
drawButton()
Draws the current button on the screen.
isClicked()
Checks whether a button has been pressed or not.

CBlackJackDoc
OnNewDocument()
Initializes the data structure for the document such as all the buttons.

CBlackJackView
OnDraw()
OnDraw is called by the framework to render an image of the document.
The function calls drawBackground() to render the background,
CBJButton:drawButton() to draw all buttons and CTableGFX:drawText() to display
draw text.
OnLButtonDown()
Every time the pen touches the screen OnLButtonDown is called.
The function then checks if the coordinates at which the screen was touched correspond
to the area encompassed by any active buttons. If they do, the actions specific to that
button are called.
updateButtons()
Draws button to the screen according to their buttonStatus. A buttons buttonStatus
depends on the game state.

CConnection
Connect()
Connect creates the root HINTERNET handle (created and used by the included
WinInet class functions) to a given server and port. The HINTERNET handle, which is

the programmatical equivalent of a successful connection to a server, is then used by all
subsequent HTTP protocol functions.
Disconnect()
Closes the HTTP session and the HINTERNET handle.

CHTTPRequest
makeHTTPRequest()
This function is used to make HTTP requests, and to retrieve the replies they generate.

CLoginDlg
OnFullScreen()
Puts the dialog in full screen mode and hides the command and task bar in order to
display as much as possible.
OnLButtonDown()
Every time the pen touches the screen OnLButtonDown is called.
The function then checks if the coordinates at which the screen was touched correspond
to the area encompassed by any active buttons. If they do, the actions specific to that
button are called.
For example, ff the login button is pressed the login function in CAction is called. If
cancel is pressed the application returns to the initial splash screen.

CSession
Get and set functions for the current member variables:

• BetSize (how big the stake is for the current)
• BV_EngineId (needed in order to maintain the session at the server)
• BV_SessionId (needed in order to maintain the session at the server)
• GameId (id for current game round)
• Dealer and player cards
• Port (port, at the gaming server, used for communication)
• Server (IP address of the gaming server)
• SSL (specifies if SSL is to be used)
• Saldo (wallet account Blackjack)
• PlayerId (id of the player currently logged in)
• PortSessionId (BV Session ID for formatted for POST requests)
• TableMax (The maximum bet of the current table)
• TableMin (The minimum bet of the current table)
• TableType (The gaming table currently being played)

CTableGFX
drawCard()
Draws a single card on the destination CDC (Class Device Context) (In our case always
the background playing area)
setButtons()
Parses the input data, sets most game specific variables (dealercards, playercards, wallet
Blackjack etc.) and decides which buttons are to be shown to the user the next time the
screen is refreshed.

Globals
An code example of how globals works in practice:

CSession objSession;

When a class wants to access the global class object it includes the class file and
references the global object as an “extern” object.

#include "Session.h"
…
extern CSession objSession;
…
objSession.setPlayerCards1("");

Globals used:

• objAction (game functionality)
• objConnection (server connection)
• objHTTPRequest (server communication)
• objSession (session functionality)
• objTableGFX (table graphics)
• objUtils (utilities)

Login functionality

1

2

4

6

8

Main.jsp

3

Blackjack.jsp

5

Blackjack2.jsp

7

10

Blackjack2.jsp

9

B

C

D

E

F

G

H

I

A

Figure 1- Overview of the requests and responses generated during the login process.

Figure 2 – Splash screen

1. The splash screen shown to the user at start-up of Blackjack.
A. The user taps the login screen.

Figure 3 – Login screen

2. The user is shown the login screen. He is asked to fill in the following details:
• Username: The 8 digit username he has been given upon registering.
• Password: The 8 digit password he chose upon registering.
• Server: The IP address of the server he wishes to log on to.
• Port: The port of the server he wishes to log on to.
• SSL: Checked if communication is to be conducted over an SSL-encrypted

connection. Left unchecked otherwise.

B. The user taps the login button. The PDA establishes a socket-connection with the server
specified in the form. The information he entered is submitted to main.jsp on the server.
Unless something unforeseen happens, the connection is kept open for the duration of
the session.

3. Main.jsp validates the submitted information.
C. The HyperText Mark-up Language (HTML) page generated by Main.jsp is sent to the

client.

Figure 4 – Login screen, communicating with the server

4. The user is shown the “Login in progress” screen indicating that communication is
going on with the server he wanted to log on to. The HTML page returned by Main.jsp
(C) is parsed. The session unique identifiers, BV_SessionId and BV_EngineId
are extracted and stored in memory on the PDA. These identifiers are needed in all
communication within the same session to validate the requests.

D. The following HTTP GET request is made by the PDA:
GET
/gaming1/casino/Blackjack.jsp?BV_SessionID=@@@@0493346568.0994156215@@@@&B
V_EngineID=callgcjfmhjbemhcffgcicfjf.0

5. BlackJack.jsp parses the request.
E. The HTML page generated by BlackJack.jsp is sent back to the client.

Figure 5 – Login screen, request parsed

6. The user is still shown the “login in progress” screen. The PDA parses the HTML page
returned by BlackJack.jsp (E). Player_id is extracted and stored for the duration of the
session. This information is needed later in other requests.

F. A HTTP POST request is to BlackJack2.jsp. The following information is
POST’ed along with the page request:

Action=init
BV_SessionID=%40%40%40%400493346568.0994156215%40%40%40%40
BV_EngineID=callgcjfmhjbemhcffgcicfjf.0
Game_id=
Player_id=12000
Stake=
Table_type=1

Parameter explanation
Action Action specifies which action the user has taken. Init is a request for

game initialization.
BV_SessionID Used to validate the request.
BV_EngineID Used to validate the request.
Game_id Of no importance in this request.
Player_id Identifier within the system for the player. Read from the value stored in

step 6.
Stake Of no importance in this request.
Table_type Of no importance in this request.

7. BlackJack2.jsp parses the request.
G. The HTML page generated by BlackJack.jsp is sent back to the client. The reply

contains the following information:

Action = init
BV_SessionID = @@@@1654501732.0994319026@@@@
BV_EngineID = callgfcmllhbemhcffgcicfif.0
Player_id = 12000
Table1 = 10,200

Table2 = 20,400
Table3 = 30,600
Table4 = 40,800
Table5 = 50,1000
Soft_double_values = 19,20
Double_values = 9,10,11
Extra_X = 0
Extra_XxX = 0
0_games = 0
Table_type = 5
Demo_games = -1
Sfx = 1
Music = 1
Speech = 1

Parameter explanation

Action Confirmation to the client of the action that has been taken.

In this case init, which means that the serverside has
initialized Blackjack for the player.

BV_SessionID Used to validate the request.
BV_EngineID Used to validate the request.
Player_id Identifier within the system for the player. Read from the

value stored in step 6.
Table1 The minimum and maximum values that a bet can take if

the player chooses to play table 1 (explained later)
Table2 The minimum and maximum values that a bet can take if

the player chooses to play table 2 (explained later)
Table3 The minimum and maximum values that a bet can take if

the player chooses to play table 3 (explained later)
Table4 The minimum and maximum values that a bet can take if

the player chooses to play table 4 (explained later)
Table5 The minimum and maximum values that a bet can take if

the player chooses to play table 5 (explained later)
Soft_double_values Parameters not used within the PDA version of
Double_values Parameters not used within the PDA version of Blackjack
Extra_X Parameters not used within the PDA version of Blackjack
Extra_XxX Parameters not used within the PDA version of Blackjack
0_games Parameters not used within the PDA version of Blackjack
Table_type Parameters not used within the PDA version of Blackjack
Demo_games Parameters not used within the PDA version of Blackjack
Sfx Parameters not used within the PDA version of Blackjack
Music Parameters not used within the PDA version of Blackjack
Speech Parameters not used within the PDA version of Blackjack

Figure 6 – Table selection screen

8. The user is shown a screen where he is allowed to choose which table he wants to play.
The 5 available tables have different minimum and maximum bets. These limits are
taken from the Table1, Table2, Table3, Table4 and Table5 parameters returned by the
previous init request.

H. The user chooses one of the tables by tapping it. A HTTP POST request is to
BlackJack2.jsp. The following information is POST’ed along with the page
request:

Action=start
BV_SessionID=%40%40%40%401654501732.0994319026%40%40%40%40
BV_EngineID=callgfcmllhbemhcffgcicfif.0
Game_id=
Player_id=12000
Stake=0.00
Table_type=5

Parameter explanation
Action Action specifies which action the user has taken. Start is a request for

gaming to begin.
BV_SessionID Used to validate the request.
BV_EngineID Used to validate the request.
Game_id Of no importance in this request.
Player_id Identifier within the system for the player. Read from the value stored in

step 6.
Stake Of no importance in this request.
Table_type Identifier for the table the user has chosen. Used to set the minimum and

maximum wagers that will be allowed within the following game
session.

9. BlackJack2.jsp parses the request.

I. The HTML-page generated by BlackJack.jsp is sent back to the client. The reply

contains the following information:
Action = start
BV_SessionID = @@@@1654501732.0994319026@@@@
BV_EngineID = callgfcmllhbemhcffgcicfif.0
Game_id = 1780822
Player_id = 10134
Hand_0_win = 0.00
Hand_1_win = 0.00
Dealercards =
Playercards1 =
Playercards2 =
State = 0
house_total =
player_0_total = 0
player_1_total = 0
saldo = 11955
stake = 0
insurance = 0
Table_type = 5
Min = 50
Max = 1000
Chip1 = 10
Chip2 = 20
Chip3 = 50
Chip4 = 100
Chip5 = 500

I.
Action Confirmation to the client of the action that has been taken. In this

case start, which means that the serverside has started Blackjack for
the player and is ready to start playing.

BV_SessionID Used to validate the request.
BV_EngineID Used to validate the request.
Game_id Unique identifier for this particular game. Every game within a

session is given a unique Game_id. This is used at the serverside to
be able to track individual games.

Player_id Identifier within the system for the player.
Hand_0_win Of no importance in this request.
Hand_1_win Of no importance in this request.
Dealercards Of no importance in this request.
Playercards1 Of no importance in this request.
Playercards2 Of no importance in this request.
State Signifies which state Blackjack is in relation to the user that has

logged in. Explained in detail in the section which details Blackjack
gaming.

house_total Of no importance in this request.
player_0_total Of no importance in this request.
player_1_total Of no importance in this request.
saldo The saldo of the player. Stored by the PDA and used to determine

how much the user can bet. Makes it harder for the user to make
malformed requests.

stake Of no importance in this request.
insurance Of no importance in this request.
Table_type Identifier for the table the user has chosen. Used to set the minimum

and maximum wagers that will be allowed within the following
game session.

Min Parameters not used within the PDA version of Blackjack
Max Parameters not used within the PDA version of Blackjack
Chip Parameters not used within the PDA version of Blackjack
Chip2 Parameters not used within the PDA version of Blackjack
Chip3 Parameters not used within the PDA version of Blackjack
Chip4 Parameters not used within the PDA version of Blackjack
Chip5 Parameters not used within the PDA version of Blackjack

Figure 7 – User logged in successfully

10. The user is shown the “Welcome” interface for Blackjack. At this point all initialization
needed by the system has been made, and the user can commence with normal gaming.

Playing Blackjack
The most complex and the largest part of the application is of course the logic required
to actually play the game. The underlying diagram and text explains the different events
associated with gaming. A more detailed and technical explanation is available in
appendix. B.

Blackjack2.jsp

Blackjack2.jsp

Blackjack2.jsp

State

A

B

C

D

E

F

G

H

1

2

3

4

5

6

7

8

Figure 8 – Overview of the requests and responses that are generated during play of blackjack.

1. The user is shown the “Welcome” interface for Blackjack. Preceding this is the
login procedure described earlier in this document.

Figure 9 – Start a new game

A. The user chooses to initiate a new game by tapping the “NEW” button. A HTTP

POST request is to BlackJack2.jsp. The following information is POST’ed along
with the page request:

Action=new
BV_SessionID=%40%40%40%401654501732.0994319026%40%40%40%40
BV_EngineID=callgfcmllhbemhcffgcicfif.0
Game_id=1780822
Player_id=10134
Stake=0.00
Table_type=

Parameter explanation
Action Action specifies which action the user has taken. new is a request for

gaming to begin.
BV_SessionID Used to validate the request.
BV_EngineID Used to validate the request.
Game_id Unique identifier for this particular game. Every game within a session

is given a unique Game_id. This is used at the serverside to be able to
track individual games.

Player_id Identifier within the system for the player.
Stake Of no importance in this request.
Table_type Identifier for the table the user has chosen. Used to set the minimum

and maximum wagers that will be allowed within the following game
session.

2. BlackJack2.jsp parses the request and generates the reply.

B. The HTML-page generated by BlackJack.jsp is sent back to the client. The reply
contains the following information:

Action = new
BV_SessionID = @@@@1654501732.0994319026@@@@
BV_EngineID = callgfcmllhbemhcffgcicfif.0
Game_id = 1780823
Player_id = 10134
Hand_0_win = 0.00
Hand_1_win = 0.00
Dealercards =
Playercards1 =
Playercards2 =
State = 0
house_total =
player_0_total = 0
player_1_total = 0
saldo = 11955
stake = 0
insurance = 0

Parameter explanation

Action Confirmation to the client of the action that has been taken.

In this case new, which means that the serverside is ready
to deal the player his hand.

BV_SessionID Used to validate the request.
BV_EngineID Used to validate the request.
Player_id Identifier within the system for the player. Read from the

value stored in step 6.
Hand_0_win Of no importance in this response.
Hand_1_win Of no importance in this response.
Dealercards Of no importance in this response.
Playercards1 Of no importance in this response.
Playercards2 Of no importance in this response.
State Explained in detail further down.
house_total Of no importance in this response.
player_0_total Of no importance in this response.
player_1_total Of no importance in this response.
saldo The balance of the player. Stored by the PDA and used to

determine how much the user can bet. Makes it harder for
the user to make malformed requests.

stake Of no importance in this response.
insurance Of no importance in this response.

Figure 10 – Bet screen

3. The user is shown the screen where he can decide how much he wants to bet.

The default value is the table minimum, shown top right. The player bets by
tapping the markers. His current bet is shown top left. The application only
allows him to make bets that are larger or equal to the table minimum, smaller
or equal to the table maximum, and smaller or equal to his saldo.

C. The user instructs the server to deal his initial cards by tapping the “DEAL”

button.. A HTTP POST request is to BlackJack2.jsp. The following information
is POST’ed along with the page request:

Action=deal
&BV_SessionID=%40%40%40%401654501732.0994319026%40%40%40%40
&BV_EngineID=callgfcmllhbemhcffgcicfif.0
&Game_id=1780823
&Player_id=10134
&Stake=50.00
&Table_type=

Parameter explanation
(Only parameters whose importance within the request differ from A. are listed. All unlisted parameters
serve the same purpose within this request as within A)

Action Action specifies which action the user has taken. deal is a request for

the server to deal the player and dealer their initial cards.
Stake Tells the server how much the player has decided to bet on the hand he

is about to receive.

4. BlackJack2.jsp parses the request and generates the reply.

D. The HTML-page generated by BlackJack.jsp is sent back to the client. The reply

contains the following information:

Action = deal
BV_SessionID = @@@@1654501732.0994319026@@@@
BV_EngineID = callgfcmllhbemhcffgcicfif.0
Game_id = 1780823
Player_id = 10134
Hand_0_win = 0.00
Hand_1_win = 0.00
Dealercards = 1
Playercards1 = 3,8
Playercards2 =
State = 0
house_total = 11
player_0_total = 11
player_1_total = 0
saldo = 11905
stake = 50.00
insurance = 1

Parameter explanation
(Only parameters whose importance within the response differ from B. are listed. All unlisted parameters
serve the same purpose within this response as within B)

Action Confirmation to the client of the action that has been taken.

In this case deal, which means that the player is receiving
the first cards of his hand.

Dealercards The cards that the dealer has received so far. Cards are
taken from a pack of 4 complete decks. Each card has a
unique number ranging from 1 to 208. The PDA receives a
comma separated list with the card identifiers and shows
these to the user.

Playercards1 The cards that the player has received so far for his first
hand. Cards are taken from a pack of 4 complete decks.
Each card has a unique number ranging from 1 to 208. The
PDA receives a comma separated list with the card
identifiers and shows these to the user.

Playercards2 The cards that the player has received so far for his second
hand. Can only contain data if the player has split.
Cards are taken from a pack of 4 complete decks. Each
card has a unique number ranging from 1 to 208. The PDA
receives a comma separated list with the card identifiers
and shows these to the user.

State Explained in detail further down.
house_total The sum of the values of each of the cards that the dealer

has received.
player_0_total The sum of the values of each of the cards that the player

has received for his first hand.
player_1_total The sum of the values of each of the cards that the player

has received for his second hand. Can only contain data if
the player has split.

insurance Indicates whether the insurance dialog should be shown to
the user. I.e., the dealer may have Blackjack, and the user
shall be given the option of taking insurance. This could
have been deduced within the PDAs own logic based upon
the dealt cards, previous designers have opted to make this
easier by sending the information to the client. A 1
indicates that the dialog should be shown, anything else
that it shouldn’t.

Figure 11 – Game screen

5. The following dialog is shown to the user. Depending on which cards the user

has been dealt a different subset of buttons, representing the actions the user can
take, is shown. In figure 11 the user has been dealt such a hand that all actions
(Stand, Hit, Double, and Split) are valid. The user is also
graphically shown the cards that have been dealt so far.

E. The user instructs the server to stand, hit, double or split by tapping the one of

the buttons he is shown. A HTTP POST request is to BlackJack2.jsp. The
following information is POST’ed along with the page request:

Action= one of [stand,hit,double,split]
&BV_SessionID=%40%40%40%401654501732.0994319026%40%40%40%40
&BV_EngineID=callgfcmllhbemhcffgcicfif.0
&Game_id=1780823
&Player_id=10134
&Stake=50.00
&Table_type=

Parameter explanation
(Only parameters whose importance within the request differ from A or C. are listed. All unlisted
parameters serve the same purpose within this request as within A or C)

Action Action specifies which action the user has taken. Action can be one of:

Stand, The user doesn’t want any more cards for the active hand.
Hit, The user wants one more card for the active hand.
Double, The user wants to double the stake for the current hand.
Split, The user wants to split his hand into two separate hands.

The user can only take actions that are legal in respect to the cards he
has already been dealt. On the PDA this is made sure of by only
showing the user buttons for legal actions.

6. BlackJack2.jsp parses the request and generates the reply.

7. As a part of step 5 the server generates a statecode. The statecode tells the

application what the result of the users action is. The following states are
possible:

0 = The game has not yet been won by any part
1 = Dealer wins with better cards
2 = Dealer wins by Blackjack
3 = Player wins with better cards
4 = The player wins one hand, the dealer the other. After a split
5 = The dealer busts
6 = The player wins with Blackjack
7 = Both hands are a draw after a split
8 = The game is a draw
9 = The player loses one hand and draws the other after a split
10 = The player draws hand one and wins hand two after a split.
11 = The player wins hand one and draws hand two after a split.
12 = Both players have Blackjack, the game is a draw.
26 = The game is closed
50 = Not enough money to cover the action.
55 = Erroneous request or server error.
60 = Too big or too small stake.
65 = The players personal gaming limit is exceeded

F. If the state is 0, i.e. no one has yet won the hand, the following response is sent

to the client.:

Action = one of [stand,hit,double,split]
BV_SessionID = @@@@1654501732.0994319026@@@@
BV_EngineID = callgfcmllhbemhcffgcicfif.0
Game_id = 1780823
Player_id = 10134
Hand_0_win = 0.00
Hand_1_win = 0.00
Dealercards = 1

Playercards1 = 3,8
Playercards2 =
State = 0
house_total = 11
player_0_total = 11
player_1_total = 0
saldo = 11905
stake = 50.00
insurance = 1

Parameter explanation

The parameters are the same as explained in step E.

Because the game hasn’t yet been won by either part, the game now returns to step 5.

G. If the state-code is something else than 0, i.e. the game has been won by

someone, the following response is sent to the client:

Action = one of [stand,hit,double,split]
BV_SessionID = @@@@1654501732.0994319026@@@@
BV_EngineID = callgfcmllhbemhcffgcicfif.0
Game_id = 1780823
Player_id = 10134
Hand_0_win = 0.00
Hand_1_win = 0.00
Dealercards = 1,7
Playercards1 = 3,8,2,5
Playercards2 =
State = 8
house_total = 18
player_0_total = 18
player_1_total = 0
saldo = 11955
stake = 50.00
insurance = 0

Parameter explanation
(Only parameters whose importance within the response differ from D. are listed. All unlisted parameters
serve the same purpose within this response as within D)

Hand_0_win The amount of money, if any, the players first hand won him.
Hand_1_win The amount of money, if any, the players second hand won him.

Figure 12 – Game finished

8. The player is shown a screen where he is informed of who won.

H. The player starts a new hand by pressing “New”. The request is the same as step

B.

Parameters not used within the PDA version of Blackjack

Soft_double_values Specifies the soft values, i.e. when the ace is counted as a 1 and

not 11,which values the player is allowed to double on.
Double_values Specifies the values which a player is allowed to double on.
Extra_X Specifies how much, if at all, the user should receive as a bonus if

he draws three 7s
Extra_XxX Specifies how much, if at all, the user should receive as a bonus if

he succeeds in drawing 5 cards or more without busting.
0_games Used to tell the client that the user has an unfinished game which

has to be played to an end before he can play a new hand.
Table_type Specifies which table the user is playing on. Table is a definition

which was invented in order to differentiate different intervals the
user is allowed to bet within. For example one table might allow
bets between 1 and 10 markers whereas another table allows bets
within 10 and 100 markers. The parameter is of no importance to
the server, it is there to give the client the notion of playing at a
table with higher or lower stakes.

Demo_games Specifies if the game being played is in demo mode. If in demo
mode no real money can be won or lost.

Sfx Specifies if sound effects should be switched on.
Music Specifies if music should be switched on.
Speech Specifies if speech should be switched on.
Min The minimum bet for the current table.
Max The maximum bet for the current table.
Chip The value of the first chip.
Chip2 The value of the second chip.
Chip3 The value of the third chip.
Chip4 The value of the fourth chip.
Chip5 The value of the fifth chip.

TERMINOLOGY

Abbreviations

API Application Programming Interface
BMP Bitmap Graphics
BV BroadVision
CAD Computer Aided Design
CDC Class Device Context
CE Compact Edition
DB Database
EGET European Game & Entertainment

Technology
EXE Executable
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
IP Internet Protocol
IR Infrared
JPG Joint Photographic Group
JSP Java Server Pages
Mb Megabytes
MDI Multiple Document Interface
MFC Microsoft Foundation Classes
OS Operating System
PC Personal Computer
PDA Personal Digital Assistant
SDI Single Document Interface
SIP Soft Input Panel
SSL Secure Sockets Layer
URL Uniform Resource Locator
WEP Wired Equivalent Privacy
WLAN Wireless Local Area Network

REFERENCES

Ian Sommerville (2000), Software Engineering (6th Edition), Addison-Wesley

Background

Solutions overview,
http://www.eget.fi/solutions.html,
2002-06-26

The Evolution of the Pocket PC as a Business Tool,
http://www.microsoft.com/mobile/enterprise/papers/evol.asp,
2001-11-02

Blackjack Rules,
http://194.112.4.91/demo_gaming1/casino/instructions/info_bot.jsp?BV_SessionID=@
@@@1023148488.1029175850@@@@&BV_EngineID=cadcekhjgeglbemicffgcicog.
0&category=Spelregler,
2002-08-12

Technology

Microsoft Windows CE: An Overview,
http://www.wirelessdevnet.com/channels/pda/training/winceoverview.html,
2002-08-05

Microsoft eMbedded Visual Tools Product Information,
http://msdn.microsoft.com/vstudio/device/prodinfo.asp,
2002-08-05

Macromedia Shockwave Player – White Paper,
http://www.macromedia.com/software/shockwaveplayer/whitepaper,
2002-08-05

Other

Products,
http://www.aidii.com/home2/product/casino.htm,
2002-08-2002

Games,
http://www.flux2game.com/games.htm?code=jack,
2002-08-2002

